Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-(3,5-Di-tert-butyl-4-hydroxyphenyl)propionohydrazide

Wei-Ming Xu, Xiu-Rong Hu* and Jian-Ming Gu

Center of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028,
People's Republic of China

Correspondence e-mail:
huxiurong@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.084$
Data-to-parameter ratio $=20.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The structure of the title compound, $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$, exhibits an elaborate network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Received 1 November 2005 Accepted 14 November 2005 Online 19 November 2005

Comment

Substituted hydrazides are very important intermediates in organic synthesis, and are commonly used in the preparation of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles (Kramer et al., 1994). In the structure of the title compound, (I), the O atom of the hydroxy group is displaced slightly from the benzene ring, with a deviation of 0.057 (2) A. probably due to an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The benzene ring and the mean plane through atoms $\mathrm{C} 7-\mathrm{C} 9 / \mathrm{N} 31$ are perpendicular to each other, with a dihedral angle of $89.30(7)^{\circ}$ (Fig. 1).

(I)

The structure of (I) exhibits an elaborate network of N $\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The mol-

Figure 1
The molecular configuration and atom-numbering scheme of (I). Displacement ellipsoids are drawn at the 40% probability level.

Figure 2
A partial packing diagram of (I), showing the hydrogen-bonded dimer and the macrocyclic ring. Hydrogen bonds are shown as dashed lines.
ecules form centrosymmetric hydrogen-bonded dimers of graph-set descriptor $R_{2}^{2}(6)$ (Etter, 1990) through pairs of N31-H301 \cdots N32 2^{ii} hydrogen bonds [symmetry code (ii) as in Table 2]. The dimers are linked by $\mathrm{O} 21-\mathrm{H} 201 \cdots \mathrm{O} 22^{\mathrm{i}}$ and $\mathrm{N} 32-\mathrm{H} 302 \cdots \mathrm{O} 21^{\text {iii }}$ hydrogen bonds (Table 2), giving a macrocyclic ring (Fig. 2). In addition, a N32-H303..O $2^{\text {iv }}$ hydrogen bond links the rings, forming a three-dimensional hydrogen-bonded network.

Experimental

The title compound was prepared according to the method described by Yin \& Shou (2003). 3-(3,5-Di-tert-butyl-4-hydroxyphenyl)propionyl chloride ($2.96 \mathrm{~g}, 10 \mathrm{mmol}$) and 85% hydrazine hydrate ($1.1 \mathrm{ml}, 12 \mathrm{mmol}$) were mixed in 50 ml methanol. The mixture was stirred overnight at room temperature. After the reaction, the mixture was evaporated and extracted with EtOAc and water, dried with anhydrous MgSO_{4} and recrystallized from ethanol to obtain 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionohyrazide (yield 2.83 g , 97\%).

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=292.42$
Monoclinic, $P 2_{1} / c$
$a=6.1848(16) \AA$
$b=14.685(5) \AA$
$c=19.097(5) \AA$
$\beta=95.439(10){ }_{2}^{\circ}$
$V=1726.7(9) \AA^{3}$
$Z=4$

$$
D_{x}=1.125 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 12611 reflections
$\theta=3.3-27.5^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=296$ (1) K
Platelet, colorless
$0.23 \times 0.20 \times 0.11 \mathrm{~mm}$

Data collection

> Rigaku R-AXIS RAPID
> diffractometer
> ω scans
> Absorption correction: multi-scan
> $\quad(A B S C O R ;$ Higashi, 1995)
> $T_{\min }=0.934, T_{\max }=0.992$
> 16372 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[0.0001 F_{\mathrm{o}}^{2}+1.09 \sigma\left(F_{\mathrm{o}}^{2}\right)\right] / \\
& \quad\left(4 F_{\mathrm{o}}^{2}\right) \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3} \\
& \text { Extinction correction: Larson } \\
& \quad(1970) \\
& \text { Extinction coefficient: } 1.9(3) \times 10^{2}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

O21-C4	$1.3794(14)$	N31-N32	$1.4202(14)$
O22-C9	$1.2365(14)$	N31-C9	$1.3270(16)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 21-\mathrm{H} 201 \cdots \mathrm{O} 22^{\text {i }}$	0.84	2.19	2.8710 (10)	139
N31-H301 \cdots N32 ${ }^{\text {ii }}$	0.89	2.11	2.9182 (14)	151
$\mathrm{N} 32-\mathrm{H} 302 \cdots \mathrm{O} 21^{\text {iii }}$	0.96	2.24	3.2011 (18)	173
N32-H303 . $\mathrm{O}^{2} 2^{\text {iv }}$	0.89	2.20	3.0756 (18)	164

Symmetry codes: (i) $x-1,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$; (iii)
$x+1,-y+\frac{1}{2}, z+\frac{1}{2}$; (iv) $-x+2,-y+1,-z+1$.

The H atoms of the hydrazino and hydroxy groups were located in a difference Fourier map and refined as riding with their as-found $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond lengths; their isotropic displacement parameters were initially refined, but fixed in the final stage. All other H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.96-0.98 \AA)$ and included in the refinement in the riding-model approximation $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Altomare, A., Burla, M., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Kramer, J. B., Boschelli, D. H. \& Connor, D. T. (1994). J. Heterocyclic Chem. 31, 1439-43.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2004). CrystalStructure (Version 3.60). Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Yin, W. \& Shou, H. (2003). Yingyong Huagong, 32, 38-40. (In Chinese.)

